Modified Clark Method

Comparison between Clark, MODClark and GSSHA MODClark Method in HEC-HMS

Clark Method

Uses Time-Area method

- Watershed is broken into areas with equal travel times to the outlet
- Time discharge histogram is created
- This histogram is then routed through a linear reservoir that causes attenuation
- Basin shape and travel time are taken into consideration
- Infiltration parameters and Rainfall are lumped through out the watershed

Clark Method

MODClark Method

- The watershed is divided into uniform grids cells and each cell represents a small sub watershed
- Travel time is calculated for each grid cells and scaled to overall watershed time of concentration
- The lagged runoff from each grid cell is routed through the linear reservoir
- The outputs from each linear reservoir are combined to form outflow hydrograph
- It is a linear, quasi-distributed transform method based on the Clark conceptual unit hydrograph
- Need either HEC GeoHMS or WMS or similar tools to create MODClark input grids.

MODClark Method

GSSHA

- It divides the watershed into uniform grid cells
- Performs all physical processes like loss calculations etc in each cells
- Transforms runoff from one grid cell to the corresponding suitable grid cell using routing technique
- Keeps accumulating flow from all the cells and finally generates outflow hydrograph

Comparing MODClark and GSSHA

???	???
 Divides watershed into grids cells Determines runoff from each cells assuming it to be sub watershed Routes runoff from each cell through linear reservoir directly to the watershed outlet 	 Divides watershed into grids cells Determines runoff from each cells assuming it to be sub watershed Routes runoff from each cell to adjacent cell using physically based equations considering soil water interaction processes